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Abstract 

Computer vision is a popular field in today's 

world. From facial recognition to object detection and 

everything in between, they all use some form of 

computer vision. In this paper we will focus on a 

specific subfield in computer vision, namely Image 

Classification. The dominant method of performing 

image classification is to use some form of a 

convolutional network. In this paper we will explore 

many properties of such a network to determine how 

altering each property affects the performance of the 

image classification model. 

1. Problem Description 

For AI to grow to become a benefit to society in 

everyday life, a key component for many agents is in 

their ability to differentiate between different types of 

objects when using a camera as a source of perception. 

This project attempts to solve this problem for a 

specific scenario - being able to distinguish if an image 

contains a human, or a horse (that is to say, classify an 

image). To demonstrate our solution, an image is 

pulled from a dataset of artificially generated pictures 

of both horses and humans [5], and the AI model will 

run over these images and attempt to classify them 

accordingly. This will allow a user to conduct 

experiments in the viability of basic image recognition 

concepts. 

2. Solution Method 

The common method to solve the problem of 

image classification is to use what is known as a 

Convolutional Neural Network (CNN). Likewise, we 

also researched this approach. 
 

2.1 Convolutional Neural Networks 

A CNN is exactly what it sounds like, a neural 

network where at least one of the layers performs a 

mathematical operation known as a convolution. In 

CNNs we use discrete convolutions, which takes the 

input as a matrix and passes a smaller matrix over it 

(usually referred to as the kernel) [2]. It then 

performs a matrix multiplication between the kernel 

and the portion of the input matrix that overlaps the 

kernel. The values in the kernel have a distinct effect 

on the features which are extracted from the input 

matrix. A diagram of this is shown below. 
 

 
Figure 1. Here the green grid is the activation layer and the grid 

below it is the input to a convolution or pooling layer. We note that for 

each cell in the activation layer, there is a shadow over a portion of the 

input layer. This shadow is the kernel. 

2.2 Our Method 

For our project we chose the default kernel values 

provided by the Keras library [1], however these 

values can have a significant impact on the outcome of 

a convolutional layer. For instance, a Gaussian kernel 

will apply a Gaussian blur to the photo. There are a 

number of hyperparameters we used Keras Tuner [6] 

to find optimized values for, such as the number of 

filters (kernels) in a convolutional layer (Fig. 1.4) , 

stride of the pooling layer (Fig 1.3) , the size of the 

kernel (Fig. 1.5) and the number of convolutional 

layers themselves (Fig 1.1). All these results will be 

discussed in the next section. In summary we used a 

specific configuration of convolutional layers, pooling 

layers, and dense layers with optimized 

hyperparameters to achieve a successful image 

classification result. These pooling layers are 

responsible for feature extraction. They do this by 

passing a kernel over some input matrix and extracting 

the maximum value in that kernel and passing it to the 

activation layer. All our convolution layers use a 

ReLU activation function, and our output layer uses 

the sigmoid activation function. 

2.3 Our Architecture 

After running the trials with Keras Tuner as 

outlined above, we landed on the following 

architecture. We used a combination of convolution 

layers in series with max pooling layers, finally ending 

with a fully connected layer (dense layer) which leads 

into the output layer, as shown in Figure 2 below. This 

is loosely based on the architecture described in the 

Google Developers ML Practicum on Machine 

Learning [3].  

 



 

 
Figure 2. Chart of the best architecture found by experimentation. 

3. Description of Results 

After running multiple experiments, each 

examining the effect of changing a singular parameter 

of our model, we found some interesting results. All 

our experiments were run under the assumption that 

the most important metric of the outcome of a singular 

model is its accuracy when run over the test dataset. 

Each of the various models first trained against the 

same dataset and were then run against the same 

validation data set. Thus, the accuracies represented 

below represent as close to real-world, practical results 

as possible. 

Initially, we experimented with the number of 

Convolutional Layers. From our testing, we found that 

the number of layers that resulted in the most accurate 

results was 6 Convolutional Layers. The remaining 

trials we ran, as well as their respective accuracies can 

be seen below, in Figure 3. 

 
Figure 3. A graph showing the accuracy of the model on the 

validation data as a function of the number of convolutional layers. 

Next, we tested various kernel sizes with respect to 

pooling layers versus the resulting accuracies. For this 

experiment, we found the most accurate Max Pooling 

kernel size to have been 6, though the potential for 

other kernel sizes to overtake that result exists under 

certain conditions. These other iterations may be seen 

in Figure 4. 

 
Figure 4. The graph showing validation accuracy as a function of 

the size of the max pooling layer's kernel. 

On a similar front, we also explored pooling layer 

strides. Our results showed that a kernel stride for max 

pooling layers of 5 to have been the most accurate, 

though the data trends seem to indicate further 

performance improvements may have been obtained 

by continuing to increase the stride. This data trend is 

exemplified in Figure 5. 

 
Figure 5. The graph showing the validation accuracy as a 

function of the Max pooling layer's kernel stride. The stride is the 

number of pixels the kernel will move at each iteration. 

We then tested altering the number of filters per 

layer, which is the dimensionality of the output space 

for that layer. For this we found the best configuration 

was an output dimension with 32 channels. As shown 

in Figure 6 below. 

 
Figure 6. The graph showing validation accuracy as a function of 

the dimensionality of the output space. 



 

Also, we ran trials to find the best kernel size for 

the Convolutional Layers. Interestingly, our results 

showed that the most optimal kernel size was 3. This 

kernel size produced a greater accuracy by a notably 

large factor. See Figure 7 below for the exact margins.  

 
Figure 7. The graph of the validation accuracy as a function of the 

convolutional layer's kernel size. 

Lasty, we experimented to find what size dense 

layer before the output layer provided the best 

validation accuracy. We ran tests on layer sizes 

starting with a size equal to that of the output layer 

(two) and increased my powers of two until we 

reached a layer size of 1024 nodes. After all trials 

were completed, we found the best configuration to 

be a size of 512 nodes. See Figure 8 below for more 

details. 

 
Figure 8. The graph of the validation accuracy as a function of the 

number of nodes in the dense layer before the output layer. 

4. Conclusion 

In this paper, we explored the impacts of tweaking 

various parameters of a convolutional neural network 

to find the maximum accuracy over a basic image 

classification problem. 

4.1 Our Results 

Our best model boasts an accuracy of 91.80% on 

the validation dataset, which is quite strong in a 

vacuum. However, in testing the final model with data 

from the internet, we found some weaknesses in it. 

These weaknesses can largely be attributed to the size 

of our training dataset, which only has 1027 training 

images (500 horses, 527 humans). There also exists a 

bias in our training data. Namely, the dataset is biased 

towards full body images of humans. Due to this bias, 

if given an image of a human in which only a portion 

of the body is visible, say their head, it will misclassify 

the image. Which leads us to ponder how we can 

improve the accuracy of our model on more general 

data. 

4.2 Next Steps 

 Our data shows that the single variable that makes 

the most impact when changed is the Kernel Size of 

one or more convolutional layer(s). Our experiments 

focused on the effects of changing a single parameter 

at a time, however it may be beneficial to allow the 

tuning of several parameters simultaneously to find the 

best overall configuration. More excitingly, 

experimenting with various boosting methods may 

also lead to improvements. 

Additionally, the dataset we tested with was 

relatively small, and improvements to accuracies 

could likely be seen when performing data 

augmentation to boost the number of training data 

points. 

Furthermore, our current model is only designed to 

support a specific size and shape for input images. It 

would be much more beneficial to the average 

application of a CNN to allow a variety of image sizes 

to be used. 

And finally, a larger and more varied training 

dataset would likely see substantial gains in accuracy. 

This could be achieved by open sourcing the dataset to 

allow input from the general public, as well as mining 

data from the internet. 
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